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Abstract

Numerous studies have reported a relationship between folate status, the methylenetetrahydrofolate reductase (MTHFR) 677CYT variant

and disease risk. Although folate and choline metabolism are inter-related, only limited data are available on the relationship between choline

and folate status in humans. This study sought to examine the influences of folate intake and the MTHFR 677CYT variant on choline status.

Mexican-American women (n =43; 14 CC, 12 CT and 17 TT) consumed 135 Ag/day as dietary folate equivalents (DFE) for 7 weeks followed
by randomization to 400 or 800 Ag DFE/day for 7 weeks. Throughout the study, total choline intake remained unchanged at ~350 mg/day.

Plasma concentrations of betaine, choline, glycerophosphocholine, phosphatidylcholine and sphingomyelin were measured via LC-MS/MS

for Weeks 0, 7 and 14. Phosphatidylcholine and sphingomyelin declined (P=.001, P=.009, respectively) in response to folate restriction and

increased (P=.08, P=.029, respectively) in response to folate treatment. The increase in phosphatidylcholine occurred in response to 800

(P=.03) not 400 (P=.85) Ag DFE/day (week�folate interaction, P=.017). The response of phosphatidylcholine to folate intake appeared to

be influenced by MTHFR C677T genotype. The decline in phosphatidylcholine during folate restriction occurred primarily in women with

the CC or CT genotype and not in the TT genotype (week�genotype interaction, P=.089). Moreover, when examined independent of folate

status, phosphatidylcholine was higher (Pb.05) in the TT genotype relative to the CT genotype. These data suggest that folate intake and the

MTHFR C677T genotype influence choline status in humans.

D 2008 Elsevier Inc. All rights reserved.
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1. Introduction

In 1998, choline was classified as an essential nutrient

for humans and adequate intakes (AI) of 425 and 550 mg/

day were established for adult women and men, respec-

tively [1]. Choline is found in plant and animal products

as free choline (small amounts) or as derivatives of

choline including phosphatidylcholine (most abundant),

phosphocholine, sphingomyelin and glycerophosphocho-

line [2,3]. Betaine is also a derivative of choline but in

contrast to the choline compounds listed above it cannot

be converted back to choline [2]. Choline, specifically,

phosphatidylcholine can also be synthesized de novo in a
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reaction catalyzed by phosphatidylethanolamine N-meth-

yltransferase (PEMT) utilizing phosphatidylethanolamine

and three methyl groups derived from S-adenosylmethio-

nine (SAM; Fig. 1).

Choline serves as a precursor for compounds possessing

diverse functions including the neurotransmitter important

in brain function, acetylcholine; phospholipids needed for

membrane integrity and cellular signaling; and betaine, a

one-carbon donor for SAM and folate-dependent one-

carbon transfer reactions [2,4]. In regard to one-carbon

transfer reactions, choline may be oxidized primarily in liver

and kidney to betaine [2]. In a subsequent reaction catalyzed

by betaine homocysteine S-methyltransferase, one of the

three methyl groups may be used for homocysteine

remethylation to methionine. Alternatively, 5-methyl-tetra-

hydrofolate (THF) may serve as the methyl donor in a

reaction catalyzed by methionine synthase which occurs in

all tissues. In humans, choline intake/status is associated
chemistry 19 (2008) 158–165



Fig. 1. Choline metabolism, phosphatidylcholine and sphingomyelin synthesis, and the role of betaine and folate in one-carbon metabolism. BHMT, betaine

homocysteine S-methyltransferase; CDP-Cho, cytidinediphosphocholine; CMP, cytidinemonophosphate; CTP, cytidinetriphosphate, DAG, diacylglycerol;

DMG, dimethylglycine; HCY, homocysteine; MET, methionine; MTHFR, methylenetetrahydrofolate reductase; PC, phosphocholine; PtdCho, phosphatidyl-

choline; PtdEth, phosphatidylethanolamine; SAH, S-adenosylhomocysteine; SAM, S-adenosylmethionine; SM, sphingomyelin; THF, tetrahydrofolate.
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with the risk of neural tube defects [5]; plasma homocys-

teine [6], a metabolite that has been linked to numerous

developmental and chronic diseases; and DNA damage [7].

In addition, choline availability has also been shown to alter

site-specific and global DNA methylation in human

neuroblastoma cells [8].

In animal models, choline-deficient diets promote folate

deficiency and folate-deficient diets lower choline status

[9,10]. However, only one study has assessed this relation-

ship in humans [11] and more studies that include measure-

ments of betaine, phosphatidylcholine (for women) and

sphingomyelin are needed to more fully delineate the

relationship between folate and choline nutriture.

Methylenetetrahydrofolate reductase (MTHFR) is an

important enzyme in folate metabolism and catalyzes the

reduction of 5,10-methylene-THF to 5-methyl-THF. In

mice, MTHFR deficiency adversely impacts choline status

[12]. In humans, a common genetic polymorphism involv-

ing a cytosine (C) to thymine (T) transition at nucleotide

677 exists [13] and is associated with reduced enzyme

activity [13], lower folate status [14] and altered risk for

chronic and developmental diseases [13,15].

As an extension of previous work [14], the objective of

the present study was to assess the influence of folate intake

and the MTHFR C677T genotype on choline status (i.e.,

betaine, choline, phosphatidylcholine and sphingomyelin) in

young Mexican-American women consuming controlled

folate and choline intakes for 14 weeks. Women of Mexican
descent were chosen as the study population because of the

high prevalence of the MTHFR 677TT genotype in this

ethnic group.
2. Subjects and methods

2.1. Human subjects

Women aged 18–45 years of self-reported Mexican

descent defined as having two Mexican parents were

selected for participation in this study and were recruited

from staff and students at Cal Poly Pomona University and

the surrounding community. At the initial screen, potential

subjects completed a health history questionnaire and gave a

fasting blood sample for MTHFR genotype determination.

For those with the appropriate MTHFR genotype, another

fasting blood sample was obtained for clinical chemistry

evaluation. Additional inclusion criteria have been de-

scribed elsewhere [14]. The screening and experimental

procedures were reviewed and approved by the Institutional

Review Board of Cal Poly Pomona University and informed

consent was obtained from each participant.

2.2. Experimental design

This was a 14-week controlled feeding study in which

subjects consumed a folate-restricted diet providing 135 Ag
dietary folate equivalents (DFE)/day for 7 weeks followed

by consumption of 400 or 800 Ag DFE/day as previously
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described in detail [14]. The diet provided 112 mg betaine

and 174 mg total choline which remained constant

throughout the duration of the study.

2.3. Diet and supplements

A low-folate five-day rotation menu consisting of non-

folic acid fortified foods was used [14]. The mean folate

content of the diet, as determined by tri-enzyme method-

ology [16,17] on three separate occasions, was ~135 Ag/
day. Total choline and betaine content of the diet as

determined by LC-MS/MS [3,18] were 174 and 112 mg/

day (Table 1). Subjects were also given supplemental

choline (350 mg; TwinLab, Twin Laboratories, Ronkon-

koma, NY, USA) every other day to provide total choline

intakes (food+supplement) of 349 mg/day. All other

nutrients were provided in recommended amounts (IOM

1998) through the diet alone or via supplements as

previously described [14]. Folic acid supplements were

prepared from commercially available folic acid (Sigma

Chemical Co., St. Louis, MO, USA) and were consumed at

the morning and evening meals throughout repletion under

the supervision of the investigators.

2.4. Sample collection and blood processing

Fasting (10 h) venous blood samples were collected in

serum separator gel and clot-activator tubes (SST, Vacu-

tainer; Becton Dickinson, Rutherford, NY, USA) and

EDTA tubes (Vacutainer). Serum was collected after

centrifugation (650�g for 15 min at 218C), dispensed into

1.5-ml microcentrifuge tubes containing ascorbic acid (10–

15 mg) and stored at �808C. Plasma and leukocytes were

collected from EDTA blood that was immediately placed

on ice and centrifuged within 1 h of the blood draw at

1800�g for 15 min at 48C. Plasma for choline measure-

ments was dispensed into 1.5-ml microcentrifuge tubes and

stored at �808C. For genotyping, the buffy layer represent-

ing peripheral leukocytes (~500 Al) was removed, dis-

pensed into 1.5-ml microcentrifuge tubes containing 50

Al dimethyl sulfoxide (Sigma), mixed by inversion and

frozen at �808C.
Table 1

Choline, glycerophosphocholine (GPCho), phosphocholine (PCho), phosphatidy

(mg/day) of the 5-day menua,b

Metabolite Menu

A B C

Choline 52 (10.0) 47.0 (6.3) 28.5 (3.

GPCho 8.7 (0.7) 25.8 (1.5) 41.0 (4.

PCho 2.0 (0.9) 3.6 (1.1) 3.0 (1.

PtdCho 19.1 (0.7) 59.8 (1.1) 20.2 (1.

LPCho 93 (5.6) 86.0 (6.5) 72.5 (6.

Total choline 174.8 (17.9) 222.2 (16.5) 165.2 (16

Betaine 104.0 (13.1) 96.3 (13.8) 118.0 (23

Results are presented as mean (S.E.M.).
a Sphingomyelin was not detected.
b Betaine is not included in the total choline content of the menu.
2.5. Analytical methods

2.5.1. Folate content of diet

The folate content of the diet was determined prior to

starting the study and twice during the study using a tri-

enzyme methodology [16] and double extraction [17].

2.5.2. MTHFR C677T Genotype

DNA for genotyping was extracted from leukocytes

using a commercially available kit (QIAamp blood kit;

Qiagen, Santa Clarita, CA, USA). Determination of the

C677T MTHFR genotype involved polymerase chain

reaction and Hinf1 restriction enzyme digestion as described

by Frosst et al. [13].

2.5.3. Serum folate

Folate concentrations of serum were determined micro-

biologically by use of the microtiter plate adaptation with

Lactobacillus casei [19]. The intra- and interassay CV were

both 12%, based on the positive control.

2.5.4. Dietary and plasma choline measurements

Plasma and food betaine, choline, phosphocholine,

glycerophosphocholine, phosphatidylcholine, sphingomye-

lin and food lysophosphatidylcholine were determined using

the method developed by Koc et al. [3] and Choudhary et al.

[18] with modifications based on our instrumentation.

Choline compounds were spiked with deuterium-labeled

internal standards of all the analytes and analyzed using

liquid chromatography tandem mass spectrometry (LC-MS/

MS). The LC-MS/MS system consisted of an LCQ

Advantage (Thermo Finnigan) with electrospray ionization

source, a Surveyor HPLC system (Thermo Finnigan) and a

refrigerated Surveyor autosampler (Thermo Finnigan). The

HPLC was equipped with an Alltech Adsorbosphere Silica

guard column (4.6�25 mm, 5 Am) and an Alltech Solvent

Miser Silica analytical column (2.1�150 mm, 5 Am). The

mass spectrometer was operated in positive ion electrospray

mode. The parent ion/daughter ion fragments monitored for

the aqueous phase choline compounds were m/z 118/59
lcholine (PtdCho), lysophosphatidylcholine (LPCho) and betaine content

D E Overall

5) 57.0 (11.8) 24.0 (4.4) 41.7 (7.2)

6) 43.0 (3.1) 20.6 (2.2) 27.8 (2.4)

3) 4.0 (2.0) 2.9 (0.1) 3.1 (1.1)

3) 32.0 (0.3) 66.0 (19.8) 39.4 (4.6)

1) 54.0 (4.7) 3.2 (0.2) 61.7 (4.6)

.8) 190.0 (21.8) 116.7 (26.7) 173.7 (19.9)

.5) 109.0 (9.4) 132.0 (3.6) 111.8 (12.7)



Table 2

Serum folate (nmol/L) and plasma concentrations (Amol/L) of betaine, choline, glycerophosphocholine (GPCho), phosphatidylcholine (PtdCho) and

sphingomyelin (SM) in Mexican-American women differing in MTHFR C677T genotype (14 CC, 12 CT, 17 TT) at baseline (0), after 7 weeks of folate

restriction with 135 Ag dietary folate equivalents (DFE)/day (7–135), and after 7 weeks of folate treatment with 400 Ag DFE/day (14–400; 7 CC, 6 CT, 9 TT) or
800 Ag DFE/day (14–800; 7 CC, 6 CT, 8 TT) or 400 and 800 Ag DFE/day combined (14–overall)

Metabolite Week-folate intake (Ag DFE/day)

0 7–135 14–400 14–800 14–overall

Betaine

CC 28.6 (2.5) 27.4 (2.3) 25.3 (2.6) 26.3 (3.8) 25.8 (2.2)

CT 27.4 (2.5) 28.7 (2.7) 27.5 (2.4) 24.0 (3.7) 25.7 (2.2)

TT 26.1 (2.4) 23.6 (2.2) 21.2 (2.7) 25.8 (4.5) 23.4 (2.5)

Overall 27.3 (1.4) 26.3 (1.4) 24.2 (1.6) 25.4 (2.3) 24.8 (1.4)

Choline

CC 13.0 (1.4) 11.7 (0.9) 11.3 (1.2) 10.5 (1.2) 11.7 (0.9)

CT 11.1 (1.3) 11.6 (1.4) 9.3 (2.0) 12.9 (1.8) 11.1 (1.1)

TT 12.5 (0.9) 11.9 (1.1) 9.5 (1.3) 14.2 (1.7) 11.7 (1.1)

Overall 12.3 (0.7) 11.7 (0.6) 10.5 (0.9) 12.6 (0.9) 11.5 (0.6)

GPCho

CC 28.5 (2.0) 28.2 (2.3) 26.5 (2.2) 25.6 (3.3) 26.0 (1.9)

CT 29.0 (2.4) 26.6 (2.3) 27.5 (3.2) 32.9 (5.3) 30.2 (3.1)

TT 27.9 (2.0) 28.3 (1.9) 27.6 (3.3) 34.6 (7.3) 30.9 (3.8)

Overall 28.4 (1.2) 27.8 (1.2) 27.3 (1.7) 31.1 (3.3) 29.1 (1.8)

PtdCho

CC 1911 (93) 1728 (78) 1760 (187) 1927 (118) 1844 (109)

CT 1727 (120) 1533 (116) 1476 (192) 1744 (183) 1610 (133)

TT 1872 (82) 1808 (66) 1767 (101) 1801 (84) 1784 (63)

Overalla,b 1844 (55) 1705 (50)4 1686 (92) 1827 (71)+ 1755 (57)y

SM

CC 718 (57) 671 (57) 679 (60) 741 (108) 710 (60)

CT 603 (37) 580 (29) 592 (70) 606 (50) 599 (41)

TT 593 (31) 561 (28) 586 (57) 594 (47) 590 (36)

Overalla 637 (26) 602 (24)4 617 (36) 646 (43) 631 (27)4

Serum folate

CC 34.0 (3.6) 16.5 (1.6) 19.3 (1.4) 42.1 (4.3) 30.6 (3.9)

CT 28.6 (2.9) 11.6 (1.1) 18.6 (1.6) 34.0 (2.5) 26.3 (2.7)

TT 29.7 (2.3) 10.9 (0.9) 14.3 (2.0) 38.5 (3.4) 25.6 (3.6)

Overalla,b 30.8 (1.7) 12.9 (0.7)4 17.0 (1.1) 38.3 (2.1)+ 27.4 (2.0)4

Results are presented as mean (S.E.M.).
a An overall week effect ( P b.05) was detected between the values in the same row (repeated measures ANOVA).
b A week by folate interaction ( P b.05) was detected for this variable (repeated measures ANOVA).

4 Denote differences between Weeks 0 vs. 7 or 7 vs. 14 at P b.05.
+ Denote differences in the response variable to 800 vs. 400 Ag DFE/day.
y Denote differences at Pz.05 and P V.1.
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(betaine), m/z 104/60 (choline), m/z 258/104 (glycerophos-

phocholine) and m/z 184/125/86 (phosphocholine). The m/

z’s monitored for deuterium-labeled internal standards were

m/z 127/68 for betaine-d9, m/z 113/69 for choline-d9, m/z

267/113 for glycerophosphocholine-d9 and m/z 193/125/95

for phosphocholine-d9. For the organic phase, plasma

phosphatidylcholine and sphingomyelin and food phospha-

tidylcholine, sphingomyelin and lysophosphatidylcholine

were detected by monitoring m/z 184/125/86 after in-source

fragmentation of phosphatidylcholine, sphingomyelin and

lysophosphatidylcholine which produced phosphocholine.

The m/z’s monitored for deuterium-labeled internal stand-

ards of phosphatidylcholine-d9 and sphingomyelin-d3 were

m/z 193/125/95 and m/z 187/125/89, respectively (phos-

phatidylcholine-d9 was also used for analyses of lysophos-

phatidylcholine in food samples). Quantification of choline

compounds in LC-MS/MS experiments was performed by

comparing samples with the signal obtained from choline
compound standards. Quality assurance was monitored

through the use of duplicate sampling and in-house control

materials. The intra- and inter-CV for each analyte measured

ranged from 2% to 12%. In addition, for plasma, each run

included all three MTHFR C677T genotypes and all three

weeks (0, 7 and 14).

2.6. Statistical analysis

Choline and its derivatives (betaine, glycerophosphocho-

line, phosphatidylcholine, sphingomyelin) were tested for

normality with the Shapiro–Wilks test (SAS PROC

UNIVARIATE). Glycerophosphocholine and sphingomye-

lin were not normal, but were transformed to a normal

distribution using an inverse power function identified by

the Box-Cox method (SAS PROC TRANSREG). Choline

was not normal and could not be transformed to normal.

Transformed values were used in all ANOVA and

ANCOVA procedures.
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Baseline differences in plasma choline, its derivatives and

serum folate between the MTHFR C677T genotypes were

assessed by one-way ANOVA. The effect of folate treatment

and the MTHFR C677T genotype through time on choline

and its derivatives was analyzed using repeated-measures

ANOVA (SAS PROC GLM). Separate analyses with each

derivative as a response variable were performed. Derivative

concentrations at Weeks 0, 7 and 14 were the levels of the

within-subjects factor. Between-subjects factors were folate

treatment (two levels: 400 or 800 Ag DFE/day) and MTHFR

C677T genotype (three levels: CC, CT, TT). All possible two-

way interactions and the three-way interaction among the

factors were included in the model. In each analysis, the

assumptions of compound symmetry and homoscedasticity

were assessed with a sphericity test of orthogonal compo-

nents. When the assumptions were not met, the Huynh–Feldt

correction was applied to all tests involving the within-

subjects effect. When the week (within-subjects) effect was

significant, profile contrasts between consecutive weeks (0

vs. 7; 7 vs. 14) were examined.

To examine the influence of the MTHFR C677T

genotype during folate restriction on choline and its

derivatives independent of folate status, an ANCOVA

(SAS PROC MIXED) was performed using serum folate,

measured previously [14], as the covariate. The relationship

among the weeks (within the subjects) was modeled as

residual covariance with a variance components structure.

Parameter estimates were fit using restricted maximum

likelihood methods. Significance of genotype using serum

folate as the covariate was assessed by Type 3 tests.

The data were analyzed using SAS/STAT software,

version 9.1.3 of the SAS System for Windows. Differences

were considered to be significant at Pb.05, whereas P

values of .05 to .1 were considered to be indicative of a

trend. Data are presented as meanFS.E.M.
Fig. 2. The influence of the methylenetetrahydrofolate reductase C677T

genotype on phosphatidylcholine (PtdCho) when assessed independent of

serum folate (i.e., serum folate was used a covariate in the statistical

analysis). Genotype was a predictor ( P= .027) of phosphatidylcholine

concentration. Phosphatidylcholine was higher ( P=.032) or tended to be

higher ( P= .067) in women with the TT or CC genotype respectively than

in those with the CT genotype.
3. Results

3.1. Subject characteristics

Forty-three Mexican-American women participated in this

study pre-selected for the following MTHFR C677T geno-

types: 14 wild type (CC), 12 heterozygous (CT) and 17

homozygous for the T variant (TT). Thewomenwere 25 years

of age (range 18–44 years) with a body mass index (kg/m2) of

25.2 (range 19.5–32). No differences (PN.05) in weight or

age were detected among the MTHFR C677T genotypes. At

baseline, no differences (Pb.05) in the measured variables

existed between the MTHFR C677T genotypes although

sphingomyelin tended (P=.08) to be lower inwomenwith the

CT or TT genotype relative to the CC genotype.

3.2. Betaine, choline and glycerophosphocholine

Throughout the study, no effect of week, genotype or

folate, or their interactions was detected on betaine, choline

or glycerophosphocholine (Table 2).
3.3. Phosphatidylcholine

Phosphatidylcholine declined from Weeks 0 to 7

(P=.001) and tended to increase from Weeks 7 to 14

(P=.087; overall week effect, P=.001; Table 2). The

observed increase during folate treatment (i.e., Weeks 7 to

14) occurred in response to 800 (P=.03) rather than 400

(P=.85) Ag DFE/day (folate�week interaction, P=.017;

Table 2). The MTHFR genotypes tended to respond

differently to folate intake. The decrease in phosphatidyl-

choline during folate restriction and the increase in

phosphatidylcholine during folate treatment occurred pre-

dominately in the MTHFR CC and CT genotypes not in the

TT genotype (week�genotype interaction, P=.089; geno-

type�folate interaction, P=.1; Table 2). Furthermore, when

examined independent of folate status (i.e., serum folate),

MTHFR C677T genotype was a predictor (P=.027) of

phosphatidylcholine concentration. Phosphatidylcholine

was higher (P=.032) or tended to be higher (P=.067) in

women with the TT or CC genotype respectively than in

those with the CT genotype (Fig. 2).

3.4. Sphingomyelin

Sphingomyelin declined from Weeks 0 to 7 (P=.009)

and increased from Weeks 7 to 14 (P=.029; overall week

effect P=.024; Table 2). No effect of genotype or the level

of folate treatment (i.e., 400 or 800 Ag DFE/day) or their

interactions with each other or week was detected. However,

when examined independent of folate status, the MTHFR

C677T genotype was a predictor (P=.01) of sphingomye-

lin. Women with the MTHFR 677 TT genotype had higher

(P=0.009) sphingomyelin concentrations than women with

the MTHFR 677 CC genotype, whereas women with the

MTHFR 677 CT genotype had intermediate concentrations

(data not shown).
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3.5. Serum folate

These data were previously published in greater detail

and with multiple measurements throughout folate restric-

tion and treatment [14]. Here, we present data for Weeks 0,

7 and 14 in order to facilitate comparisons with choline

status and demonstrate compliance to the study protocol.

Serum folate decreased (Pb.001) after folate restriction and

increased (Pb.001) after folate treatment particularly in the

800 vs. 400 Ag DFE/day group (folate level inter-

action=P b.001; Table 2). Serum folate was lower

(P=.003) in women with the MTHFR 677 TT or CT

genotype relative to the CC genotype after folate restriction

and tended (P=.08) to be lower in these women throughout

the study duration. However, no significant interactions

were detected between week and MTHFR C677T genotype

or between MTHFR C677T genotype and folate treatment

(i.e., 400 vs. 800 Ag DFE/day).
4. Discussion

This controlled feeding study conducted in young

Mexican-American women sought to assess the influence

of the MTHFR 677CYT variant and folate intake on

choline status. Compliance to the study protocol was

demonstrated by the significant changes in serum folate in

response to folate restriction and treatment. The study

findings confirm the relationship between folate intake and

phosphatidylcholine [11] and extend this relationship to

sphingomyelin. Specifically, phosphatidylcholine and sphin-

gomyelin decreased in response to folate restriction

( P= .001, and P= .009, respectively) and increased

(P=.087 and P=.028, respectively) in response to folate

treatment. For phosphatidylcholine, the increase was in

response to folate treatment with 800 (P=.03) not 400

(P=.85) Ag DFE/day (week�folate interaction, P=.017).

Importantly, the low folate diet utilized in the present study

during folate restriction is commensurate with the folate

intake of the vast majority of the world’s population residing

in countries without mandated folic acid fortification

programs. The adverse effects of low folate intake on

choline status underscore the importance of including

assessments of choline status in developmental anomalies

and chronic diseases with ties to folate.

The mechanism by which folate restriction decreased

plasma phosphatidylcholine and sphingomyelin concentra-

tions cannot be determined by the present study. However,

based upon what is known about the metabolic pathways of

choline and folate, we propose that folate restriction

decreased the availability of methyl groups for phosphati-

dylcholine synthesis through the PEMT pathway. Another

possibility is that folate restriction increased the demand for

betaine as the methyl donor in the methionine pathway. The

latter possibility would favor the oxidation of choline to

betaine at the expense of phosphatidylcholine synthesis

through the Kennedy pathway. In contrast, folate treatment
with 800 Ag DFE/day may have increased the availability of

methyl groups for phosphatidylcholine synthesis through

the PEMT pathway and/or reduced the demand for betaine

and favored the synthesis of phosphatidylcholine from

choline. Since the majority of sphingomyelin is synthesized

from phosphatidylcholine [20], it would be sensitive to

changes in the phosphatidylcholine pool.

Data from the present study also suggest that the response

of choline to changes in folate intake is modified by the

MTHFR C677T genotype. An interaction (P=.089) was

detected between folate restriction and MTHFR C677T

genotype on phosphatidylcholine concentration. The nature

of the interaction was that the MTHFR 677TT genotype was

less responsive to decreases in folate intake in women with

the CT or CC genotypes. Furthermore, when examined

independent of folate status (i.e., serum folate was used as a

covariate in the analysis), women possessing the TT genotype

had higher (P=.03) phosphatidylcholine concentrations

compared to the CT genotype and were similar to the CC

genotype (Fig. 2). These data provide support for a possible

compensatory mechanism that allows for maintenance of

phosphatidylcholine under conditions of low folate intake in

women with the MTHFR 677TT genotype at least over the

short-term. Up-regulation of the PEMT pathway is one

potential mechanism. In this regard, methyl groups derived

from betaine and/or folate would be channeled toward

phosphatidylcholine synthesis at the expense of other

reactions such as DNA methylation. This possibility is

supported by the following observations: global DNA

methylation is lower in human leukocytes obtained from

the MTHFR 677 TT genotype (relative to the CT or CC

genotype) under conditions of low folate status [21–23]; flux

through transmethylation reactions (i.e., SAMYS-adenosyl-

homocysteine) is higher in women with the MTHFR 677TT

genotype relative to the CC [24]; global DNA is hypomethy-

lated in tissues of MTHFR-deficient mice [25]; and liver

phosphatidylcholine concentrations in MTHFR-deficient

mice do not differ from those in wild-type mice despite

lower betaine and choline concentrations [12].

An AI for choline of 425 and 550 mg/day for women and

men, respectively, was recently established [1]. The AI was

based on the amount of choline needed for the prevention of

elevated liver enzymes in healthy young men consuming

controlled choline and folate intakes. In the present study,

consumption of ~350 mg/day choline derived from dietary

(174 mg/day) and supplemental (350 mg every second day)

sources was sufficient in preventing liver dysfunction

assessed via plasma concentrations of ALT and AST (data

not shown). However, it was not enough to maintain or

achieve baseline plasma phosphatidylcholine and sphingo-

myelin even when the folate RDA (i.e., 400 Ag DFE/day) was
consumed. Unfortunately, established norms for blood

choline concentrations that would facilitate further assessment

of our study findings are not available. Furthermore, while

data on the concentrations of choline-containing compounds

in common foods have been recently published [26,27], few
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studies have examined choline intake in the general popula-

tion. Utilizing a food-frequency questionnaire, Cho et al. [6]

reported an energy-adjusted mean choline intake of 312 and

314 mg/day for men and women, respectively, in the

Framingham Offspring Cohort. These estimates are substan-

tially lower than initial predictions of 730 to 1040 mg/day [1].

While the results of our controlled feeding study suggest that

young women may require more than 350 mg/day choline, it

is clear that additional studies are needed to more fully

examine human requirements for choline.

The biological significance of the observed decline in

plasma phosphatidylcholine in response to folate restriction

is unknown. However, phosphatidylcholine in plasma is

present primarily as low-density lipoproteins (LDL) and

high-density lipoproteins (HDL) under fasting conditions.

Thus, the decline in plasma phosphatidylcholine may

suggest that less phosphatidylcholine is incorporated into

these lipoproteins during their assembly within the liver

and/or fewer lipoproteins are being exported from the liver

[28]. Changes such as these may have implications on

lipoprotein profiles as well as long-term liver function.

Interestingly, in the present study, HDL-C tended (P=.056)

to decline from 1.52 to 1.39 mmol/L for women in the 400

Ag DFE/day treatment group (data not shown). This modest

decline in HDL-C was not observed among women in the

800 Ag DFE/day treatment group nor was it observed for

either LDL-C or total cholesterol. A decline in plasma

phosphatidylcholine concentration and HDL was recently

reported in a mouse model with targeted deletion of the

hepatic CTP:phosphocholine cytidylytransferase gene, the

product of which is critical to the Kennedy pathway and the

synthesis of phosphatidylcholine from choline [29]. Thus,

the possible link between folate, choline and HDL-C in

young women warrants further investigation.

Tomore fully delineate the relationship between folate, the

MTHFR C677T genotype and choline metabolism, studies

assessing gene/protein expression in choline relevant path-

ways are needed as are investigations involving the use of

stable isotopes. At present, it is clear that folate intake, and

likely the MTHFR C677T genotype, modulates choline

nutriture. Because of the interdependence between folate and

choline, additional work is needed to examine the possible

role of choline in diseases associated with folate nutriture.
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